Словарь
-
Аудиометр
АУДИОМЕТР - прибор для получения (обычно автоматического) аудиограммы, создающий калиброванный сигнал в каждом телефоне и отмечающий на графике уровни, на которых испытуемый подает знак, свидетельствующий о появлении или исчезновении слышимости.
-
Аудиограмма
АУДИОГРАММА - график, вычерчиваемый (обычно автоматически) аудиометром, дающий характеристику слухового восприятия или величину потери слуха испытуемого в функции от частоты. Обычно строится отдельный график для каждого уха.
-
Архитектурная акустика
Архитектурная акустика, акустика помещений, область акустики, изучающая распространение звуковых волн в помещении, отражение и поглощение их поверхностями, влияние отражённых волн на слышимость речи и музыки. Целью исследований служит создание приёмов проектирования залов (театральных, концертных, лекционных, радиостудий и т. п.) с заранее предусмотренными хорошими условиями слышимости. В закрытых помещениях более или менее значительного объёма слушатель воспринимает, кроме прямого звука, ещё и ряд его запаздывающих повторений, обусловленных отражениями от ограничивающих поверхностей и быстро следующих друг за другом. Вследствие поглощения звуковой энергии при каждом отражении и в процессе её распространения эти повторения ослабляются тем сильнее, чем больше их запаздывание относительно прямого звука. После выключения источника звука количество отражённой энергии в помещении убывает до тех пор, пока она не будет поглощена; это постепенное затухание звука называется реверберацией. Продолжительность реверберации является важнейшим фактором, определяющим акустическое качество залов. При чрезмерно медленном затухании звучание речи и музыки оказывается недостаточно чётким, при короткой реверберации речь звучит слишком глухо, а музыкальные звучания утрачивают слитность и выразительность. Даже при оптимальной реверберации на акустическую оценку зала влияют распределения времён прихода ранних, более интенсивных отражений, а также и направления, по которым они достигают слушателя. Наиболее благоприятные условия различны не только для речи и музыки, но и для музыкальных произведений различного характера (камерная, эстрадная, симфоническая музыка). Поэтому акустическое проектирование концертных залов (выбор формы, размещение слушателей, обработка ограничивающих поверхностей рассеивающими и поглощающими конструкциями, применение подвесных отражателей и т.д.) нередко требует компромиссных решений. В залах большой вместимости условия слышимости могут быть улучшены применением электроакустических систем усиления и искусственной реверберации; выдающимся примером электроакустически оснащенного зала универсального назначения (конгрессы, концерты, опера, звуковой кинопоказ) может служить большой (6000 мест) зал Дворца съездов в Московском Кремле. Прежде в состав А. а. включали вопросы изоляции помещений от проникающих извне звуков; теперь эти проблемы выделились в самостоятельную область - строительную акустику. Методами А. а. пользуются также в технике борьбы с шумом в помещениях. В А. а. различают более строгую волновую теорию и менее строгую, но более удобную для технических расчётов геометрическую, в которой направление распространения и границы основной части потока звуковой энергии, переносимой падающими на препятствие или отражёнными звуковыми волнами, изображают прямыми лучами. Геометрические представления тем более правомерны, чем меньше длина звуковой волны по сравнению с размерами препятствия. Современная А. а. ведёт начало от работ американского учёного У. Сэбина, показавшего в последнем десятилетии 19 в., что в замкнутом помещении последовательные многократные и при этом постепенно ослабевающие отражения сливаются в плавно затухающий гул, сопровождающий каждый излученный звук (т. н. реверберация), причём скорость затухания является существенным показателем условий слышимости. Примеры применения акустических знаний в строительстве находят в открытых театрах Древней Греции и Рима. Акустические испытания помещений основаны на электрических измерениях звукового сигнала, принимаемого в помещении микрофоном, и заключаются в определении равномерности распределения звука в пространстве и в исследовании затухания отзвука во времени. Наряду с испытаниями залов в натуре всё большее распространение находят испытания малых моделей, что позволяет своевременно избежать ошибок при проектировании новых залов и находить способы исправления дефектов уже существующих. Управление акустическими условиями в помещении осуществляется путём установки отражающих щитов и регулирования количества звукопоглощающих материалов, размещаемых на поверхностях. Теория звукопоглощения и методы его измерения также относятся к А. а. Всё больше распространяется применение электроакустической аппаратуры для звукоусиления и для создания искусственной реверберации. Электроакустическими способами имитации отзвука помещения пользуются также в лабораторной практике. -
Амплитуда
Амплитуда - максимальное значение колеблющейся величины.
-
Акустический
Акустический - имеющий свойства или характеристики, действующие на звук или связанные со звуком: "акустические плитки", но не "акустический инженер" (если речь только не идет о коэффициенте поглощения звука инженером!). -
Акустические материалы
Акустические материалы подразделяются на звукопоглощающие материалы и звукоизоляционные прокладочные материалы.
Звукопоглощающие материалы применяются в основном в звукопоглощающих облицовках производственных помещений и технических устройств, требующих снижения уровня шумов (промышленные цехи, машинописные бюро, установки вентиляции и кондиционирования воздуха и др.), а также для создания оптимальных условий слышимости и улучшения акустических свойств помещений общественных зданий (зрительные залы, аудитории, радиостудии и пр.). Звукопоглощающая способность материалов обусловлена их пористой структурой и наличием большого числа открытых сообщающихся между собой пор, максимальный диаметр которых обычно не превышает 2 мм (общая пористость должна составлять не менее 75% по объёму). Большая удельная поверхность материалов, создаваемая стенками открытых пор, способствует активному преобразованию энергии звуковых колебаний в тепловую энергию вследствие потерь на трение. Эффективность звукопоглощающих материалов оценивается коэффициентом звукопоглощения a, равным отношению количества поглощённой энергии к общему количеству падающей на материал энергии звуковых волн.
Звукопоглощающие материалы имеют волокнистое, зернистое или ячеистое строение и могут обладать различной степенью жёсткости (мягкие, полужёсткие, твёрдые). Мягкие звукопоглощающие материалы изготовляются на основе минеральной ваты или стекловолокна с минимальным расходом синтетического связующего (до 3% по массе) или без него. К ним относятся маты или рулоны с объёмной массой до 70 кг/м3, которые обычно применяются в сочетании с перфорированным листовым экраном (из алюминия, асбестоцемента, жёсткого поливинилхлорида) или с покрытием пористой плёнкой. Коэффициент звукопоглощения этих материалов на средних частотах (250-1000 гц) от 0,7 до 0,85.
К полужёстким материалам относятся минераловатные или стекловолокнистые плиты размером (мм) 500 x 500 x 20 с объёмной массой от 80 до 130 кг/м3 при содержании синтетического связующего от 10 до 15% по массе, а также древесноволокнистые плиты с объёмной массой 180-300 кг/м3. Поверхность плит покрывается пористой краской или плёнкой. Коэффициент звукопоглощения полужёстких материалов на средних частотах составляет 0,65-0,75. В эту же группу входят звукопоглощающие плиты из пористых пластмасс, имеющие ячеистое строение (пенополиуретан, полистирольный пенопласт и др.).
Твёрдые материалы волокнистого строения изготовляются в виде плит "Акминит" и "Акмигран" (СССР), "Травертон" (США) и др. размером (мм) 300 х 300 х 20 на основе гранулированной или суспензированной минеральной ваты и коллоидного связующего (крахмальный клейстер, раствор карбоксиметилцеллюлозы). Поверхность плит окрашена и имеет различную фактуру (трещиноватую, рифлёную, бороздчатую). Объёмная масса 300-400 кг/м3, коэффициент звукопоглощения на средних частотах 0,6-0,7. Разновидность твёрдых материалов - плиты и штукатурные растворы, в состав которых входят пористые заполнители (вспученный перлит, вермикулит, пемза) и белые или цветные портландцементы. Применяются также звукопоглощающие плиты, в которых древесная шерсть связана цементным раствором (т. н. акустический фибролит). Выбор материала зависит от акустического режима, назначения и архитектурных особенностей помещения.
Звукоизоляционные прокладочные материалы применяются в виде рулонов или плит в конструкциях междуэтажных перекрытий, во внутренних стенах и перегородках, а также как виброизоляционные прокладки под машины и оборудование. Характеризуются малым значением динамического модуля упругости, как правило, не превышающим 1,2 Мн/м2 (12 кгс/см2), при нагрузке 20 Мн/м2 (200 кгс/м2). Упругие свойства скелета материала и наличие воздуха, заключённого в его порах, обусловливают гашение энергии удара и вибрации, что способствует снижению структурного и ударного шума. Различают звукоизоляционные прокладочные материалы, изготовляемые из волокон органического или минерального происхождения (древесноволокнистые плиты, минераловатные и стекловолокнистые рулоны и плиты толщиной от 10 до 40 мм, объёмная масса 30-120 кг/м3), а также из эластичных газонаполненных пластмасс (пенополиуретан, пенополивинилхлорид, латексы синтетических каучуков), выпускаемых в виде плит толщиной от 5 до 30 мм; объёмная масса эластичного пенополиуретана 40-70 кг/м3, пенополивинилхлорида 70-270 кг/м3. В ряде случаев для целей звукоизоляции применяются штучные прокладки из литой или губчатой резины.
-
Акустика
Акустика (от греч. akustikos - слуховой, слушающийся), в узком смысле слова - учение о звуке, т. е. об упругих колебаниях и волнах в газах, жидкостях и твёрдых телах, слышимых человеческим ухом (частоты таких колебаний находятся в диапазоне 16 гц-20 кгц); в широком смысле - область физики, исследующая упругие колебания и волны от самых низких частот (условно от 0 гц) до предельно высоких частот 1012-1013 гц, их взаимодействия с веществом и применения этих колебаний (волн).
Исторический очерк. А. - одна из самых древних областей знания, зародившаяся из потребности дать объяснение явлениям слуха и речи и в особенности музыкальным звукам и инструментам. Ещё древнегреческий математик и философ Пифагор (6 в. до н. э.) обнаружил связь между высотой тона и длиной струны или трубы; Аристотель (4 в. до н. э.) понимал, что звучащее тело вызывает сжатия и разрежения воздуха, и объяснял эхо отражением звука от препятствий.
-
Алфавит
форма письменности, основанная на стандартном наборе знаков. В алфавите отдельные знаки — буквы — обозначают фонемы языка, хотя однозначное соответствие звук ↔ буква наблюдается редко и имеет обыкновение утрачиваться в процессе развития устного языка. Алфавит отличается от пиктографического (идеографического) письма, где знаки обозначают понятия (шумерская клинопись), и морфемного и логографического письма, где знаки обозначают отдельные морфемы (китайское письмо) или слова